Note

On Saturation with Splines

O. Shisha

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SIXTH-FIFTH BIRTHDAY

1.

There is a whole class of results stating that if one can approximate a function very closely by splines of degree $\leq k$, then the function reduces essentially to a polynomial of degree $\leq k$. One variant of this class is the theorem below for which we give a proof using an argument employed in [11], [12] and [13].

2.

Let k be an integer ≥ 0 , and let $-\infty < a < b < \infty$. For n = 1, 2,... let $x_j^{(n)} = a + j(b-a) n^{-1}, j = 0, 1,..., n$, so that $I_{n,j} = (x_{j-1}^{(n)}, x_j^{(n)}), j = 1, 2,..., n$, are *n* congruent subintervals of (a, b). For n = 1, 2,... let S_n be the set of all real functions defined on $[a, b] - \{x_0^{(n)}, x_1^{(n)}, ..., x_n^{(n)}\}$ which in each $I_{n,j}$, j = 1, 2,..., n, coincide with a polynomial of degree $\leq k$.

THEOREM. Let f be a real function defined on (a, b). Suppose, for n = 1, 2, ..., there is an $s_n \in S_n$ such that, as $n \to \infty$,

$$\sup_{x \in [a,b] - \{x_0^{(n)}, x_1^{(n)}, \dots, x_n^{(n)}\}} |f(x) - s_n(x)| = o(1/n^{k+1}).$$

Then f coincides on (a, b) with a polynomial of degree $\leq k$.

3.

Proof. We assume, as we may, a = 0, b = 1. Let

$$\epsilon_n = n^{k+1} \sup_{x \in [0,1] - \{0,1/n,2/n,\ldots,1\}} |f(x) - s_n(x)|, \qquad n = 1, 2, \ldots,$$

Copyright () 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

640/13/4-11

so that $\epsilon_n \to 0$. Then, for n = 1, 2, ..., m = 1, 2, ..., m > n, we have (with $s_n(0) = \lim_{x \to 0+0} s_n(x)$)

$$|s_m(0) - s_n(0)| \leq \sup_{0 < x < 1/m} |\{f(x) - s_n(x)\} - \{f(x) - s_m(x)\} \\ \leq (\epsilon_n/n^{k+1}) + (\epsilon_m/m^{k+1}) \to 0,$$

as $n, m \to \infty$. Hence $s_n(0)$ has a finite limit which we denote f(0). Then, for $n = 1, 2, ..., |f(0) - s_n(0)| = \lim_{m \to \infty} |s_m(0) - s_n(0)| \le \epsilon_n/n^{k+1}$. We define similarly $s_n(1), n = 1, 2, ...,$ and f(1) and have, for n = 2, 3, ...,

$$\sup_{x\in[0,1]-\{1/n,2/n,\ldots,(n-1)/n\}} |f(x) - s_n(x)| = \epsilon_n/n^{k+1}.$$

We prove now that f is continuous in [0, 1]. Let $0 \le c \le 1$ and $0 < \epsilon \le 3$. Choose an integer $n > (3/\epsilon)^{1/(k+1)}$ such that

$$\sup_{x \in [0,1]-(1/n,2/n,...,(n-1)/n]} |f(x) - s_n(x)| \leq 1/n^{k+1}$$

and such that c is not of the form j/n, 0 < j < n, j an integer. Let j_1 be the integer satisfying $(j_1 - 1)/n \le c \le j_1/n$, $1 \le j_1 \le n$. There is a $\delta > 0$ such that if $|h| < \delta$ and $c + h \in ((j_1 - 1)/n, j_1/n)$, then $|s_n(c + h) - s_n(c)| < \epsilon/3$. For such an h,

$$|f(c+h) - f(c)| \leq |f(c+h) - s_n(c+h)| + |s_n(c+h) - s_n(c)| + |s_n(c) - f(c)| < (2/n^{k+1}) + (\epsilon/3) < \epsilon.$$

Let $-\infty < \alpha < \beta < \infty$ and let g be a real function defined and bounded on $[\alpha, \beta]$. For x and x + (k + 1)h in $[\alpha, \beta]$ consider the (k + 1)th difference

$$\Delta_{h}^{k+1}g(x) = \sum_{j=0}^{k+1} (-1)^{k+1-j} \binom{k+1}{j} g(x+jh).$$

It is 0 if g coincides in $[\alpha, \beta]$ with a polynomial of degree $\leq k$. For every $t \ge 0$ set

$$\omega_{k+1}(g; \alpha, \beta; t) = \sup_{\substack{\alpha \leqslant x \leqslant \beta \\ \alpha \leqslant x + (k+1)h \leqslant \beta} \\ |h| \leqslant t} |\Delta_h^{k+1}g(x)|.$$

A well-known tool we shall use is the fact [14, p. 104] that

$$\lim_{t\to 0+0}\omega_{k+1}(g;\alpha,\beta;t)/t^{k+1}=0$$

implies that $\omega_{k+1}(g; \alpha, \beta; t) = 0$ for every $t \ge 0$.

Let $0 < |h| \le t$, $0 \le x \le 1$, $0 \le x + (k+1)h \le 1$. Following [11], [12] and [13], let n_0 be the largest positive integer n for which the closed line-segment L joing x to x + (k+1)h lies in some interval [(j-1)/n, j/n], $1 \le j \le n$. Then $(k+1)|h| > (6n_0)^{-1}$. For otherwise if say $L \subseteq I_0 =$ $[(j_0 - 1)/n_0, j_0/n_0]$, $1 \le j_0 \le n_0$, then L would lie either in one of the two closed halves of I_0 or in its (open) middle third. In each case the maximality of n_0 is contradicted.

Extend the definition of s_{n_0} (if $n_0 > 1$) so as to be continuous in I_0 . Since $s_{n_0^{L}}$ coincides there with a polynomial of degree $\leqslant k$, we have $\Delta_{h}^{k+1}s_{n_0}(x) = 0$ and hence

$$\begin{split} |\mathcal{\Delta}_{h}^{k+1}f(x)| &= |\mathcal{\Delta}_{h}^{k+1}[f(x) - s_{n_{0}}(x)]| \leqslant \sum_{j=0}^{k+1} \binom{k+1}{j} |f(x+jh) - s_{n_{0}}(x+jh)| \\ &\leqslant 2^{k+1} \sup_{\substack{(j_{0}-1)/n_{0} < y < j_{0}/n_{0}}} |f(y) - s_{n_{0}}(y)| \leqslant 2^{k+1} \epsilon_{n_{0}}/n_{0}^{k+1} \\ &\leqslant \epsilon_{n_{0}}[12(k+1) \mid h \mid]^{k+1} \leqslant \eta(t) t^{k+1}, \end{split}$$

where

$$\eta(t) = [12(k+1)]^{k+1} \max_{n > [6(k+1)t]^{-1}} \epsilon_n \to 0, \quad \text{as} \quad t \to 0+0.$$

Thus for every t > 0,

$$\omega_{k+1}(f;0,1;t)/t^{k+1} \leqslant \eta(t)$$

and therefore $\omega_{k+1}(f; 0, 1; t) = 0$ for every $t \ge 0$. Hence $\Delta_h^{k+1}f(x) = 0$ whenever $0 \le x \le 1, 0 \le x + (k+1)h \le 1$ and therefore

$$\mathcal{A}_{h}^{ij}f(x) = 0$$
 whenever $j \ge k+1$, $0 \le x \le 1$, $0 \le x+jh \le 1$. (1)

This together with the continuity of f in [0, 1] imply that f coincides there with a polynomial of degree $\leq k$. (For [7, Chapter I] the sequence of Bernstein polynomials

$$B_n(x) \equiv \sum_{j=0}^n f\left(\frac{j}{n}\right) \binom{n}{j} x^j (1-x)^{n-j}$$
$$\equiv \sum_{j=0}^n \left[\Delta_{1/n}^j f(0)\right] \binom{n}{j} x^j, \qquad n = 1, 2, \dots,$$

converges uniformly to f(x) in [0, 1]. By (1),

$$B_n(x) \equiv \sum_{j=0}^k \left[\Delta_{1/n}^j f(0) \right] {n \choose j} x^j, \quad n = k+1, k+2, \dots,$$

and hence $f(x) \equiv \lim_{n \to \infty} B_n(x)$ must coincide in [0, 1] with a polynomial of degree $\leq k$.)

O. SHISHA

References

- 1. J. H. AHLBERG, E. N. NILSON AND J. L. WALSH, Complex cubic splines, *Trans. Amer. Math. Soc.* **129** (1967), 391-413.
- 2. J. H. AHLBERG, E. N. NILSON AND J. L. WALSH, "The Theory of Splines and Their Applications," Academic Press, New York and London, 1967.
- 3. G. BIRKHOFF, Local spline approximation by moments, J. Math. Mech. 16 (1967), 987–990.
- 4. R. DEVORE AND F. RICHARDS, Saturation and inverse theorems for spline approximation, *in* "Spline Functions and Approximation Theory," pp. 73–82, Birkhäuser Verlag, Basel and Stuttgart, 1973.
- 5. R. DEVORE AND F. RICHARDS, The degree of approximation by Chebyshevian splines, *Trans. Amer. Math. Soc.* 181 (1973), 401-418.
- 6. D. GAIER, Saturation bei Spline-Approximation und Quadratur, *Numer. Math.* 16 (1970), 129-140.
- 7. G. G. LORENTZ, "Bernstein Polynomials," University of Toronto Press, Toronto, 1953.
- 8. F. RICHARDS, On the saturation class for spline functions, *Proc. Amer. Math. Soc.* 33 (1972), 471–476.
- 9. K. SCHERER, On the best approximation of continuous functions by splines, *SIAM J. Numer. Anal.* 7 (1970), 418–423.
- 10. K. SCHERER, Characterization of generalized Lipschitz classes by best approximation with splines, *SIAM J. Numer. Anal.* **11** (1974), 283-304.
- O. SHISHA, A characterization of functions having Zygmund's property, J. Approximation Theory 9 (1973), 395–397.
- O. SHISHA, Characterization of smoothness properties of functions by means of their degree of approximation by splines, J. Approximation Theory 12 (1974), 365–371.
- O. SHISHA, On the degree of approximation by step functions, J. Approximation Theory 12 (1974), 435-436.
- 14. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Macmillan, New York, 1963.