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1.

There is a whole class of results stating that if one can approximate a
function very closely by splines of degree ~ k, then the function reduces
essentially to a polynomial of degree ~k. One variant of this class is the
theorem below for which we give a proof using an argument employed in
[11], [12] and [13].

2.

Let k be an integer ?,:O, and let - 00 < a < b < 00. For n = ii, 2, let
x~n) = a + j(b - a) n-\j = 0, I, ... , n, so that In.j = (x~~i, x\n)),j = 1,2, , n,
are n congruent subintervals of Ca, b). For n = 1,2,... let Sn be the set of all
real functions defined on [a, b] - {xb"), xi''), ... , x;~)} which in each In,j,
j = 1, 2, ... , n, coincide with a polynomial of degree ~;; k.

THEOREM. Letfbe a realfunction defined on (a, b). Suppose,jor n 0= 1,2, ... ,
there is an Sn E Sn such that, as n ---+ 00,

sup !f(x) -- sIlex)! = 0(1 (/lk el).
,TE[O .b]_{x~n).<r~n)••••• x:~nl}

Thenf coincides on (a, b) with a polynomial of degree k.

3.

Proof We assume, as we may, a = 0, b = 1. Let

En = nk:I SUp I f(x) - sn(x)!,
xElO,II- (0.1 In.2 In, ... ,1)
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so that E" --'>0 O. Then, for n 1, 2" .. , m

(with .1',,(0) limr-o+o s,,(x))
I, 2" .. , III n, we have

] .1'",(0) -- s,,{O)] sup iU(x) s,,(x)}- U(x) s",(x))
O<;t<l/tn

as n, m -+- 00. Hence .1',,(0) has a finite limit which we denote j(O). Then, for
n = 1,2, ... , I j(O) - s.,,{O)I=' limnH- i .1'1//(0) .- .1',,(0)1 En/nk+l. We define
similarly .1',,(1), n = 1,2,... , andj(l) and have, for n = 2,3, ... ,

sup f(x) - s,,(x)] ,,~ En/nkd .
a'E[O.I]--(j In .2/" ..... (n-II.,,}

We prove now thatfis continuous in [0, I]. Let° c:S:; 1 and °< E :s:; 3.
Choose an integer n (3/E)I/(kc l) such that

sup i j(x)- s,,(x)i l/nk+1

.'·E[O.l] -- (I In.2 /" •... , ("-1) In)

and such that c is not of the form l/n, 0 < 1 < n,.i an integer. Let.il be the
integer satisfying Ul - l)/n :s:; c ':;;it/n, I .il ,C:;: n. There is a I) > 0 such
that if I h I < I) and c + hE (UI -- I )jn,iI!n), then i sn(c + h) - Sn(c) 1 < E(3.
For such an h,

I fCc + h)- fCc)! ! fCc ..;.. 11) - S,,(c --I- 11)[ + ! Sn(C -f- 11) - sn(c)i

+ ! Sn(C) -- f(c)1 < (2/n k +1
) + (E/3) < E.

Let - 00 < ex < f3 < 00 and let g be a real function defined and bounded
on [ex, f3]. For x and x + (k + I)h in [ex, f3] consider the (k + I)th difference

k+l k --'-- I
Ll;~ Ig(X) = I (-IY+l-j ( I. ) g(x + jll).

j~O J

It is 0 if g coincides in [ex, f3] with a polynomial of degree ~k. For every
t ~ 0 set

WHl(g; ex, f3; t) = sup I Ll~+lg(x)l.
Ct~x<t3

,,<x+(k+l)II<B
11I1<t

A well-known tool we shall use is the fact [14, p. 104] that

implies that Wk+l(g; ex, f3; t) = 0 for every t ~ O.
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Let 0 < I h I ~ t, 0 ~ x ~ 1, 0 ~ x + (k + l)h ~ 1. Following [11],
[12] and [13], let 110 be the largest positive integer 11 for which the closed
line-segment L joing x to x + (k + l)h lies in some interval [(j - l)/I1,j/I1],
1 ~ j ~ 11. Then (k + 1) Ihi> (6110)-1. For otherwise if say L c:: 10 =
[Uo - 1)/l1o,jo/l1o], 1 ~ jo ~ 110 , then L would lie either in one of the
two closed halves of 10 or in its (open) middle third. In each case the
maximality of 110 is contradicted.

Extend the definition of Sn (if 110 :> 1) so as to be continuous in I o . Since
o

Sn" coincides there with a polynomial of degree ~k, we have Ll~+1sn (x) = 0o . '0

and hence
k+1 k.' 1

!Ll~+1j(x)1 = I Ll~+1[f(x) - Sno(x)] I ~ j~ (; ) I j(x +- jh) ~ sno(x + jh)1

~ 2k+1 sup lj(y) - sno(Y)1 ~ 2k+1Enjn~+1
(jo-1) Ino<y<jolno

where

7](t) = [l2(k+ 1)]k+1 max En-->-O,
n>[6(k+l)t]-1

Thus for every t :> 0,

as t -->- 0 + O.

Wk+1(f; 0, 1; t)/tk+1 .:S;; 7](t)

and therefore Wk+1(f; 0,1; t) = 0 for every t ~ O. Hence Ll~+J~(x) = 0
whenever 0 ~ x ~ 1, 0 ~ x + (k + l)h ~ 1 and therefore

Ll,,ij(x) = 0 whenever j?: k + 1, O~: x ,S:; 1, 0 ~ x +- jh ~ 1. (1)

This together with the continuity off in [0, 1] imply that f coincides there
with a polynomial of degree ~k. (For [7, Chapter I] the sequence of
Bernstein polynomials

Bn(x) == f f (1-)('~) xj(l - X)'H
i~O n J

== f [LlLnj(O)] (~) Xi, 11 c_-~ 1,2,... ,
j~O I

converges uniformly to lex) in [0, 1]. By (1),

11 = k -;- 1, k +- 2,... ,

and hence j(x) === limn~", Bn(x) must coincide in [0, 1] with a polynomial of
degree ~k.)
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